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A scheme used in building models of three -
dimensional objects through binocular and motion
parallax analyses is presented. Some preliminary

results in using the models for recognition are
described, and a discussion of the major
objectives summarizes the rationale of the work.

The principal emphasis throughout the paper will

be that effective vision requires flexible,
domain-free, three-dimensional modelling.
I i .
Object recognition and scene analysis

research systems may be categorized by the use
they make of models. The 'hard-wired' approach so
common in areas such as chromosome classification,
and typical 'blocks world' analysis places them in
the lower rank of  modelling varieties. The
descriptive primitives and their inter -
relationships - which determine classifications are
embedded implicitly in the operation of these
schemes, and accommodation to other domains is out
of the guestion. Increased flexibility can be
attained through the .more modular approach of
supplying the system with certain pre-defined
feature primitives from which it can compose
appropriate object descriptions. This technique
can be seen in the two-dimensional vision works of
Roberts, Barrow, Widrow, and Turner, and has a
very significant presence - in many - Computer-
Aided-Design schemes ([Braidl, [Voelcker]) and the
three-dimensional work of Popplestone et al.
However, even in. the vision work here the
dependence on a particular domain is very heavy.
No general = shape descriptive mechanism is
available, and each form to be recognized must be
anticipated and encoded (or programmed)
beforehand. With the static nature of their
feature sets and their limited descriptive range,
these systems have only cosmetic advantage over
the 'hard-wired' approach.

It is ocommon practice in well defined,
task-oriented problems to introduce such
domain-specific, insight-driven program tailoring
whenever it will lead to more direct and efficient
solutions. In these oases, purist attitudes,
arguing for generality and flexibility, should
rightly be abandoned. The long term prospects of
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machine vision, however, cannot. be met by
extension of programs dedicated and optimized in
their performance to specific domains. In.  this,
generality and. flexibility will be essential
ingredients.

A system, to show <competence in visual
processing, must, among other things, be able to
both use and construct fully descriptive (and this
means three - dimensional) models of the objects
in its environment, It must be able to look out
on a scene and build models of whatever is there
(hande, peoole, cars, etc.), and.then be able to
manipulate these models, comparing them with other
descriptions it may build in analyzing:some. .later
viewed scene. Regarded in this way, the program's
role will be seen to be quite passive .- it will
not be acting gs the models, but as an intelligent
interface between those in its: memory and the
presented visual data. Only in this way, with
specific domain dependent knowledge removed  from
the processing can- the wanted extensibility be
sought.

Note that the model building required of such
a system is, in a .way, ocomplementary  to
recognition. While recognition is a process of
taking - deseriptions from memory and using them in
the analysis of presented visual images, modelling
is the process of analyzing such visual images to
build descriptions of the objects from the present
environment., Since recognizing is associating the
experiences of the present with those of the past,
it is only sppropriate that a recognition ‘scheme
also be a modelling scheme.. it needs to keep - a
record of its past experience.

A large part of the reason - for the
proliferation of - domain~specific vision research
may lie in the myopia inherent in:the way sensors
have been used. Typically, an entire analysis is
based upon a single television image. This may
seem to be a reasonable compromise, as it does
appear to allow the feeling and flavour of wvision
without the complications of three - dimensional
or time analysis. Unfortunately such - a . process
has - a striking resemblance to a stationary,
one-eyed fly's single~shot vision, and provides
too weak a paradigm  when the ever-present
comparison is with that of our own human sight. A
machine vision system, - as the human system it
tries to simulate, must be able to increase and
refine the understanding it has of its environment
- working in a domain ' of  three-dimensional
objects, its  representation must encompass that
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three = dinensionality, yet 8 siagle {aoie alpele)
projectead  inage of scpe unknown object can reveal
wery litble of Lba 3-0 pature, Consider the bask
af’ teyveng to exbragt saffisisat iaformation Cron A
tolgrigion image oot just  te recodoize  aone
objest, it Ea create a desoription that will
mpable that oblect te be recognized wnenever LE in
mmen  agEin, in any Srientatlos, and under any
viewsng conditions, This weakneas of the aingla -
ViEW approach  has besn a re-enforossent  fof
pre=analyzirg two - dimengional projections; and
Ehus iamo=ing an  the pecceasind 8 doaain ol
prpectation. hn esoape froo  bhis darain -
dependencae trap calls Far a different,
conziderably skronger parsdigm,

[t was my antention in this work ta  explore
the  possinrlitiss of machine vision Lo an
unrestrooted desain af objeata, with WVidWing
ponditions ap mear those in whish bEhe heman ayebaen
oparates aa prackticabla {this exeloded lamers, and
obher sush direct ranging davioes)., The necessity
of having a threesdigmensional repredentation  Led
ne Lo consider ways of repressnting surface =hape,
dfd, 1A LuFn, thres-Jimensional objsckt astruskure,

and the need to obtain Lhis stegcbure through a
telavision camera led me ko the problem of
detarmining meana of  mokang o ossdk three -

dimenaional neAsures,

Human= use Bireguler and motion parallax f{as=
well as other annabe and ledsned bechrigqies) in
distinguisking  depths, and [  determined to
oonoentrate of  seaing kow an  analysis of Lhis
banooular and Bstics parallax; as obtained throush

a4 mabhile televimion opgera, dould réveal thres =
dimenaional abape and relationships. (SimLlar
approache:  0ap ba Se8an in the work of [Baumsart |,

which atarted sarlier aod tan oconcurrently with
thi®s work, and tha later work of [RAurrl.d

It 1x smportent pot Go tuild snka = vwislioo
eysten any specifis  knowledgs of shapes. This
means  we aust  excludes from oopsiderstion  aay
pracesn that tokes reguons from afn i888e, LAfers
theair arieatation frem an analysss of shape [L'H‘-l
2 pircle may appesr &8 an silipse), and usen these
infarred shapes aa priouvbives  in ita rodel
dessriplion, Tt im anly after we determine o
context, based on exparisnde, that wae can de thia
in our wvaision, and o YifrdlA Aodalling aysben,
NAYIRE A0 experiensd, and kmowing nothing of  the
context  that experiencs teaches, shoqld similarly
have na preccnoeptions of shape or abmpe
implicat vona.

Lurvatyre Irregulacaities apd Buildane Models

What I have done \n Chis work in an  attempt
ta Keep shape preagnoeption:.  ouk of the
proeesging L to ochose @ very  low-level

deporiptave prioibiva, hopefully without a domain
bras, #rmd use this In specilfying shape. The
description ias Fformed: by Icsabing carticular
aecond ordar irreRularities in  projected inades,
tracking them over & asaries of views, and bualding
ip o meshed network whose nodes  are thess
irregularities (in 3 ospacel, and whaad aras are
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the surfacs curvatores joining themn.. The acdel of
s surface’s ahapa, than, is this n#eshing of
yeckars and curvature desorapkora - ta b
vasualized perhaps a5 a ware-peshed epskelstan,
4n object whole, whinh may consist of many
surfeces, is defired in @ -aimilar manner; with
waokara looating and ofienting iks =onstituest
sarfaces. Figure 1 shows a =ingle-surfaced ob feck
dafined in this way,

The primitives of Ethesge shape desgriptions
are poinks afl corvature irregulariby - thoaes
paslbioss in Ehe imoge where oonaktant  corvabure
arce, fitted te& the sentours [or  edien),
terninate. Thease oocur moat  prevalently whers
ahape jrresularcity 5 densest, and, bepfg local
measpres, allow the analysis to be much  lesa
mspmoEpbible Lo prajedlive ancmolien and pecluzions
[Ehe total surface shape, beine & goaplex of lecal
ahape, anly loses definition at the paslusisn).
Thay EFe paychalorinally interesting, Being
measures of the 6#ost disorinipative aspect of
shape, its smoothness and  irregularaby {rea=nher
Atenmave's catl, and their use as o metrio pubs oo
constrainke an the type af shopes to be dealbt with
{amy projected shape can be gléesély apprafisatad
with sirealar arcs; even polyhedral edses).

Teotoral model from l=ft ¥aodel from Pront
{aurface area deawn As straight edzes)

Ohject studied From left
Figare 1

doject fron froot

The jmplanentacion forced several comprofises
im the prafeased patentions. Clearly, clutbered
scenes were not allowsd in Ehe AEcdellifg  ohase,
b jects atiadied were rigid, single—coloursd,
apague zolids {although asrliar work was done with
a multi-soloured objest), A Fixed gamera frane
rade it neceasary to rotate the objects, rather
than the camera [for posk porposes, Lhess ace
equivalenk] .

The Eask of obtaining object desoriplicna af
this form ir dsplenented threogh twa processes
[programaed in Macra on & POP=10), The F[arat
analyzes individual images of 3 scene, extrasting
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contour descriptions based upon the irregularity
measure. The -second takes sequential pairs of
such descriptions, - correlates them (that is,

correlates their irregularities), and constructs
the meshed networks representing their shapes.

The protocol for the low level analysis is
the following. An object, mounted on a spit, is
photographed, the image analyzed, and the results
of the analysis are passed to the correlation
process. The object is then rotated on the spit
(through a known angle) to a new orientatiom,
where it is photographed, and the analysis
repeated. Fufther rotations are made, each being
followed by the image acquisition, analysis, and
transmission.to the correlator.

Each analysis first involves scanning the
intensity array to find picture points that
(probably) lie on. region boundaries, a process
which requires two passes over the array with a 2
by 1 pixel operator. The first pass locates the
horizontal  edges, the second the . vertical
(figure 2a). There is 1little of special
significance in this aspect of the processing..
the edge points, or intensity discontinuities, are
positioned where the  intensity gradient 1is
greatest in an . area bounded Dby either
near-homogeneous  areas . (typically the middle of
imaée regions), or intensity gradient inflections.
Circular arcs are then fitted through these
points. The endpoints, or junctions of these arcs
are the ourvature irregularities used in the
correlation (figure 2b).

View 1.

View 2

; {T'_ ""'_"“‘ﬂ.i
'

"“*»—«—»J ™ [ "

Intensity Dlseontxnultxes
Figure 2a

GI

Arcs drawn as straight edges
Vertices are curvature irregularities
Figure 2b

-

viewed from 90°to left viewed from front
Edges running between end points of 3-D vectors
determined by the correlation of the vertices of
the 2 view descriptions of Figure 2b.
(gaps occur when 2 adjacent irregularities
do not have correlates)
Figure 3a

S L

viewed from the left viewed from the front
Next correlation vectors
Figure 3b

Sy

Composite description from 3a and 3b
formed by superimposing the 2 descriptions
and binding them together with the tracked

’ tdepth' arcs.
Figure 3¢

The correlation process operates on the
output of  two sequential low level analyses. It
begins by finding corresponding regions in the two
views (using as measures distance apart, size, and
average intensity). Once these are established,
it selects corresponding curvature irregularities
and, correlating them, determines the three -
dimensional vector they imply {(figure 3a). The
measures used in selecting corresponding curvature
irregularities include the concavity or convexity,
both at the junctions and in the ares on either
side . (these - are topological tests), and the
magnitude of their separation.and the direction of
their vertex bisectors (positional tests). To
determine the vector, the correlation process must
know  the ‘equation of the rotational axis (the
spit) 1lying in - the plane " of :projection, its
distance from the camera, and the rotational angle
change, as . well as the two - dimensional
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coordinates of the irregulscsbiss in the twe vieus
(tha vestor at point X in figure Ja uwas derived
from the correlation of wertioss 1 and 2 in Figure
2o, Figure 3b ahows  the position=  of  weckars
froa the pext darrelation, sod figure 3o ahaws the
aonpeaite descripbion after thoss 2 corpalaticas,

It iam't cowiows, but this doppéelabion  works
eguaily well Ffor "peal’ edge irregularit:es, soch
a3 the ¥ertices of o cube, as |t doea for thomss on
"peeudo’  edges, three-dimensional gonbours, MWath
the former {Figure Ya), the veotor will actually
locate the wertex (within Ehe digatization Ereor},
While if the lattsr case, bhe veotor will indiaste

a parnt mear the swurface lying hebwsapn  Lhe
irregularities seen N the Ews  prolecksd views
(figursa 4b), Thi® may seem to be a Tlaw in the

acdulling, but is actually gquite the opposite -
the distance above the surfsds i= proportional to
thie angle of rotabion and the  oconvewity of the
surfade, #nd = not large = Che aros conneching
thess veotorm (teroed ‘depth’ arcal literally hold
the model togethas.

Projectaion :-\; =
Vactor — -
definstion .

—_—

Tiew Z

Heal wertex
Figure Ua

ijmtiana-}t
o

Fd

Tagter cefinition . o

[ak kn te:snz Liom L,

Paouds-pdes Tertax
Figure 4b

Each soch veotar may have up to four surface
deacripter arcs  leaving :t [Pigure 5}, Tus of
thesa may be to the left and right {'Bragdih?

arps), and run to weotors adjacent, and derived
froa the sams Teo indivedual views. The other teo
may axtend i the fropt and rear {these are
‘depth' ‘aroe.. mobics those arcs in Feers  To
whioh were not pressst in either figure Ja or Jb).
Tha left/right ares garry survakure information;
88 Lhelr shapes were seen in Ehe tho  views
sarrelated, but the depbh Arcs bave no  Lnduostion
ol curvature., their shapes were not ssen. Im

Yishan=6:

fact depth arcs are  Just inferred from  the
tracking of wegbors as the abjeck rotates (this is
the motiom compamant ef the analysis). An ongoing
clustepring projegs aollapses thess ‘depth' arca
wWhen the irregularities they ssparate are within
the digithzation error of each other, and oreates
others uhen new irregularities  approash  ssrlisc
easa  {the deasripbion is wrapping back arcund on
Ltaalfl,

riFnt
laft
' nreadt n:':f_:n :
i frent
'depth!
aro
Surfaas
wactor
Centre of
Heferanse, Lrelehbatiring

vactors)

U pomsible surface dascripbse ards
Flaure §

Theas vestors and ares, then, are’ the basps
for purfece shape description, Singe an object
may consist of many surfaces, eagh is speosfied =s
a oompoaibe of its surface vestaral descriptiona,
(48 maptionsd ssclier, the objects modelled wers
alwaak exalusively single=purfaced. ) Figurs T
shows the proeression of Che nodelline Ehrough a
sequance o Lem  viewse (in 20 degres Lnorenmental
with bthe objeot of figure 6. Part "a' is tha
pndivichml regions as found QN Che  inEemAaiby
arrays, part 'h' shouwd the ! breadth® are=  foroed
fran the correlatices (viewsd froo 35%to the lefr,
snd from the front), while part "ot indicates the
aoaposike descpriptions aa ther pre  ferned
[succosssve ‘hreadih’ arcs joined with  their
trackad "depth® arcal, again viewed from 307 to tha
Left, and from the front.

Figure 0 shows the coapleted fAcdel viowed
roazhly 1n the orienktations depicted in figura 8.
There are a fow aberrant poinks onp  thiz model,
nokably ‘im  the 1eft Figure Bt the sxlreme botton
FiZht and the Toep Jeflt. Thexe arise [rom the
eirrelatisn  of irregularities whose local surface
18 mearly orthogonal to the potational  awas.,

this error s diffizult  te swaid when anly eos
AXis 48 wEsed, Twe perpendicular axes can Be
handled 1a this sodelling schens, but tests were

only carried out Tor the case of one axis,
Details of the modelling, Just mentionsd here, are
available in [Baker].

ect modelled in Fagure 7
Vikure
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4\ " Three views of abjeck
' 2 Figurs
R |
>— !
I T e
w ]
l"
. 5 Models s sesn Crod oreentabions if Fugure A

Figure §

Shaos ComDArisons

An expreasive an thess descriptions may seem,
they are surely Loo verboas Lo be used plone for
ebject recognabion, and it is st this point that
our interast may turn ko the use of ashape
primitives. = However, for: fresdom from domain
dapendanog, LE ig apgantial that any  auck
primitives be asbstracted only from the shape
models ip the modelling scheme's oemory, That ia,
LFf it 1S Eo use shape [feature prisitives, they
dpal be dnes which it derives it=elfl aover a periad
of prelivimary opecation. hlthough essantial,
this im of sourss a gargantuan task. A subproblem
here a3 well is that of beinz able %o compare
parta of such models =0 that ocommon desociptiona
may b abstracted ms shape primitives, to be theno
applisd to the analysis of subseguently presedted
obJeats, kn efCfioient recognition schema will
work wikh thege abstracted prifitives s partition
nodels inte more sysbolic fore, Sot of courae thias
Lod Faguires vechoral conparisons,  The comparisen
process Qs thus bAasic  te bobth  recognition  and
gensralization, and the spprépristepsss of the
representation will depend vpon its ability to  be
used (A such & podel mabching scheme.

Frogure 10a repeats the model sonatrucksd [For
the object of figure 1. Figure 10b phows another
model of the sane objeck, but comstructed from o
difrerent  initial orientation [making &t wvery
unlikely that many, il any, of their corresponding
vectars will be coinoidemnt). The two models have
batwaen 50 and 180 wvertex polnta  {thres =
damensional veators)] sach, which suggests that the
straightfarvard approacsh of comparing all  poists
in paira would be impractical, It is also cbyious
that thers nesdn’'C even be & 1 o 1 correspondence
betwesn Ehe poinks on the bEwo acdsla. Although
the vwectors are derived by analyzing shape

irregularities, thess are projective messures, and

!W'T—I,—I with twa arbitPary initial pesitienimgs, nothing

dwkjemat|ma i L can be assumed about their relative crientations

or the relative Iocakiona aof  Ebeir  surfacs

Frograzaion of the Hodelling TeCTora, If asnapa  coDDArisonm 18 to prooeed,

rn 20 degres inorementa something mast be [fowmd that will alledw theas
Figure T relations to be discovered.
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viewed from left  from front from below
Model of figure 1

Figure 10a

from left from front  from below
Model of same object as figure 1, but analyzed
from a different orientation
Figure 10b

As each model is constructed, it is put in a
pseudo-canonic form ('pseudo' because it cannot be
guaranteed to be unigque).. it is reoriented about
a coordinate = frame defined by its greatest
breadth, and two other axes calculated normal to
this,. Yet even. this does not ensure a unique
orientation, as the views used for the correlation
are discrete projective slices, -and an object
having many - similar  large diameters  could
(depending upon the - particular views seen) have
any of them chosen as its maximal. - To force a bit
more order into the process, I assume that if two
shapes are to be considered similar, then at least
a certain number ‘of their = topologically
significant features should correspond (note that
the - assumption could run into trouble where there
is severe occlusion or where . an object has a
highly symmetric nature). This is implemented by
keeping with each model a 1list of its 6 -most
concave or convex vertices (these characterize the
local surface  shape ‘about a ' vector, ‘and are
indicated in figures 10a and 10b byD). The figure
6 is arbitrary, but must be at least 3 to enable
the transformation equations to be determined (the
more there are, the better the chance of finding a
mateh, but equally the longer it may take to
discover it). The problem of finding the possible
relationship between the two shapes is now reduced
to finding similar triangles in these 2 sets of "6
points (with the additional requirement that
corresponding vertices be of the same type -
either =~ concave or convex) (figure 11). The
similarity, rather than congruence, allows objects
of different scale to be compared.

imilar
. triangles

g 2=-D analogy
Xmarks -significant concavities/convexities
Figure 11

Viston-6:
654

If no such pair of similar triangles can be
formed among these points, then the surfaces may
be considered to be different (with the above
noted exceptions to the assumption). If there is
such a pair, then the transformation that maps one
set onto the other should equally map all points
in that model ‘onto the other model (however not
necessarily in a point to- point way). Comparing
the shapes is then a ‘matter of reorienting and
translating successive vectors of the one model,
and determining how close each lies to the surface
of the other model. This is done by finding which
'patch' of the other surface each point projects
onto and determining its distance from- - that
surface (figure 12). A 'recursive process crawls
about on the two meshings, branching along each

arc, and backing up when a node vector lies too
far from its opposing surface.
Surface point,
, distance to
gurface

opposing

surface
’ .
/ ‘ (neighbouring
vectors)
/ ;-
Mapping vectors to surfaces
Figure 12
The  theoretical error limit of the

correlation process was about one fifth of an inch
for the 90 by 90 images used (with a 9 inch . field
of view at about. 5 feet), and the vector to
surface distance allowed in the matching was twice
this value. It would be possible (although it was
not implemented) to look at the cumulative errors
in point to surface mappings, and use these to
adjust  the initially inferred transformation
equations. This would be of major advantage
whenever the similar triangle vertices are located
to one side of the surface, where the digitization
and correlation inaccuracies could lead to minimal
error in the transformation for points near the
vertices but significant errors as the distance
from them increases. Figure 13 shows both' objects
in the orientation in which they were successfully
matched (80% of the points corresponded, while
only 23% in the left model were successfully
mapped onto the surface of the model in figure 9).

Models of figures 10a and 10b, drawn in
the orientations in which they were found to match
Figure 13
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It is not my intention to suggest from this
preliminary matching success that the memory of
models be used in this way, as the extraction and
use of commonly occurring shapes is critical for a
recognition scheme that hopes to work in anything
resembling - real time. But, as stated, this
comparison procedure is an important part of the
generalizing, and it was necessary to show that
the models could be manipulated and compared in
this way.

Erojections

My objective with this work now is to go back

through much of . it and bring it up working with
larger (250 square) images of multi-coloured
objects, then:when satisfied with its performance
at this level, to study the shape generalization
problem. A few further, more futuristic, goals -
model modification to contain 'dynamic' structure
information (making 'working' models of non-rigid
obJjeats), and self-organization of model memory,
to provide efficient, perhaps context-sensitive,
retrieval - indicate the potential for further
development within this modelling framework.

Inportant Points

This approach, stepping into multiple - view
analysis, marks avsignificant change from previous
work in machine. vision.

It permits a yaluable recounsideration of
programming approach. Established vision methods,
where all information available to the analysis is
presented - in one single view, force the analysis
to be temporally 1local with their over-riding
demand for an interpretation, and make the system
particularly - sensitive to the destructive
influence of view-point anomolies and image noise.
The analysis of parallax, with its correlating of
many sequential images, allows one to loosen this
dependence on ‘'clean' pictures, -and leave the
generalizing over errors or ambiguities of
analysis to the more capable higher level process
that works in time. ('Dirty', or structurally
discontinuous sequences of pictures don't exactly
help, but neither are they catastrophic.)

Different still is its annzgagh Lo . the

; of objects and shape for goncise

yet detailed descriptive models. As much as its

uniqueness was underplayed in the discussion of

shape matching, there is truly something canonic,

and even psychologically significant, in the use
of this irregularity-based representation.

But most a;sn;ﬁ;san& is the step Lhis takes

Previous
efforts in computeér vision have involved embedding
a great deal' of domain-specific “knowledge (eg.
the domain of tri-hedral convex polyhedra) into
the workings of the process.' In these systems the
initial state knowledge has served to define and
constrain the environment. Instead, this system
is given, through an understanding of parallax,
working knowledge of the behavior of physical
objects in  three - space. Having ways. of

manipulating the environment, it is able to
exploit this behavioral knowledge in analyzing the
scene.

Part of this work was supported by two successive
research contracts from the National Engineering
Laboratory to Professor Donald Michie, The Machine
Intelligence Research Unit, Edinburgh University,
Edinburgh, Scotland.
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